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Abstract
This paper describes the Gamera framework for

building custom document recognition systems. This
open-source system is designed to support the test-
and-refine development cycle: an important style for
developing recognition systems that work with diffi-
cult historical documents, since the solutions are of-
ten non-obvious. This paper explains the overall ar-
chitecture of the system, in addition to detailed in-
formation on recent research subprojects and their
performance on real-world data.

1 Introduction

Gamera is a framework for the creation of structured
document analysis applications by domain experts.
Domain experts are individuals who have a strong
knowledge of the documents in a collection, but may
not have a formal technical background. The goal
is to create a tool that leverages their knowledge of
the target documents to create custom applications
rather than attempting to meet diverse requirements
with a monolithic application.

We intend to use Gamera to develop applications
for a number of diverse collections, including me-
dieval manuscripts, lute tablature, Greek text, and
handwritten text. There are many collections that
would benefit from this technology and would repre-
sent a diverse range of document analysis challenges
[1].

This paper gives an overview of the architecture
and design principles of Gamera. In addition, recent
additions to Gamera are discussed in more detail,
with an analysis of their performance on real-world
data.

2 Architecture overview

Developing recognition systems for difficult histor-
ical documents requires experimentation since the
solution is often non-obvious. Therefore, Gamera’s
primary goal is to support an efficient test-and-refine
development cycle. Virtually every implementation

detail is driven by this goal. For instance, Python
[2] was chosen as the core language because of its
introspection capabilities, dynamic typing and ease
of use. It has been used as a first programming lan-
guage with considerable success [3]. C++ is used to
write plugins where runtime performance is a prior-
ity, but even in that case, the Gamera plugin sys-
tem (Section 2.3.2) is designed to make writing ex-
tensions as easy as possible. Gamera includes a full-
fledged graphical user interface that provides a num-
ber of shortcuts for training, as well as inspection
of the results of algorithms at every step. By im-
proving the ease of experimentation, we hope to put
the power to develop recognition systems with those
who understand the documents best. We expect at
least two kinds of developers to work with the sys-
tem: those with a technical background adding al-
gorithms to the system, and those working on the
higher-level aggregation of those pieces. It is im-
portant to note this distinction, since those groups
represent different skill sets and requirements.

In addition to its support of test-and-refine de-
velopment, Gamera also has several other advan-
tages that are important to large-scale digitization
projects in general. These are:

• Open source code and standards-compliance so
that the software can interact well with other
parts of a digitization framework

• Platform independence, running on a variety of
operating systems including Linux (Figures 2–
5) and Microsoft Windows (Figures 8–9)

• A workflow system to combine high-level tasks

• Batch processing

• A unit-testing framework to ensure correctness
and avoid regression

• Rich user interface components for development
and classifier training



• Recognition confidence output so that collection
managers can easily target documents that need
correction or different recognition strategies

2.1 Tasks

Gamera has a modular plugin architecture. These
modules typically perform one of five document
recognition tasks:

1. Pre-processing

2. Document segmentation and analysis

3. Symbol segmentation and classification

4. Syntactical or structural analysis

5. Output

Each of these tasks can be arbitrarily complex, in-
volve multiple strategies or modules, or be removed
entirely depending on the specific recognition prob-
lem at hand. The actual steps that make up a com-
plete recognition system are completely controlled
by the user.

2.1.1 Pre-processing
Preprocessing involves standard image-processing

operations such as noise removal, blurring, de-
skewing, contrast adjustment, sharpening, binariza-
tion, and morphology. Close attention to and refine-
ment of these steps is particularly important when
working with degraded historical documents.

2.1.2 Document segmentation and
analysis

Before the symbols of a document can be classi-
fied, an analysis of the overall structure of the docu-
ment may be necessary. The purpose of this step is
to analyze the structure of the document, segment it
into sections, and perhaps identify and remove ele-
ments. For example, in the case of music recognition,
it is necessary to identify and remove the staff lines
in order to be able to properly separate the individ-
ual symbols. Similarly, text documents may require
the removal of figures.

2.1.3 Symbol segmentation and
classification

The segmentation, feature extraction, and clas-
sification of symbols is the core of the Gamera
system. The system allows different classifiers to
be plugged-in. These classifiers come in two fla-
vors: “interactive” classifiers, where examples can
be added and the results tested immediately, and
“non-interactive” classifiers, that are highly opti-
mized but static. Gamera has a generic and flexible

XML-based file format (Section 2.1.5) to store clas-
sifier data, but for efficiency, the “non-interactive”
classifiers can also define their own format contain-
ing Pre-parsed or pre-optimized data. At present,
we have an implementation of the k-nearest neigh-
bor (k-NN) algorithm [4] whose weights are opti-
mized using a genetic algorithm (GA) [5]. We have
tested the extensibility of our classifier framework by
porting a simple back-propagating neural network li-
brary to Gamera [6]. We also plan to examine what
modifications would be necessary to support stateful
classifiers, such as hidden Markov models.

2.1.4 Syntactical or structural
analysis

This process reconstructs a document into a se-
mantic representation of the individual symbols.
Examples of this include combining stems, flags,
and noteheads into musical objects, or grouping
words and numbers into lines, paragraphs, columns
etc. Obviously, this process is entirely dependent
on the type of document being processed and is a
likely place for large customizations by knowledge-
able users.

Section 3.1 describes a pattern matching engine
designed to help with many of these analysis prob-
lems.

2.1.5 Output
Gamera stores groups of glyphs in an XML-

compliant format (Figure 1). This makes it very
easy to save, load, and merge sets of training data.
Since a run-length encoded copy of the glyph is in-
cluded, it is easy to load the original images and
inspect, edit or generate new features from them.

Output of data that is specific to a particular type
of document, i.e. post-structural interpretation, is
deliberately left open-ended, since different domains
will have different requirements. For example, the
GUIDO [7] file format is used for symbolic music
representation by our Gamera-based music recogni-
tion application.

2.2 Graphical user interface

Since document recognition is an inherently visual
problem, a graphical user interface (GUI) is included
to allow the application developer to experiment
with different recognition strategies. At the core of
the interface is the console window (Figure 2) which
allows the programmer to run code interactively and
control the system either by typing commands or
using menus. All commands are recorded in a his-
tory, which can later be used for building automatic
batch scripts. The interface also includes a simple
image viewer, image analysis tools (Figure 3), and a
training interface for the learning classifiers (Figure



Figure 1: An example glyph from the Gamera XML file format.

<?xml v e r s i o n=” 1 .0 ” encod ing=” u t f−8”?>
<gamera−database v e r s i o n=” 2 .0 ”>

<g l y ph s>
<g l yph u l y=”798” u l x=”784” nrows=”15” n c o l s=”12”>

<i d s s t a t e=”MANUAL”>
<i d name=” lowe r . c” c o n f i d e n c e=” 1.000000 ”/>

</ i d s>
<!−− Run−l e n g t h encoded b i n a r y image ( whi t e f i r s t ) −−>
<data>

5 6 4 9 2 4 2 4 2 4 3 3 1 4 6 5 8 4 9 3 8 4 9 4 8 5 7 5 3 3 3 9 3 9 6
4 2 0

</data>
<f e a t u r e s s c a l i n g=” 1 .0 ”>

<f e a t u r e name=” a rea ”>
180 .0

</f e a t u r e>
<f e a t u r e name=” a s p e c t r a t i o ”>

0 .8
</f e a t u r e>
<f e a t u r e name=” compactness ”>

0.584269662921
</f e a t u r e>
<f e a t u r e name=”moments”>

0 .219907407407 0 .228888888889 0 .0697385116598 0 .126611111111
0 .0505606995885 0 .0203254388586 0 .0177776861746 0 .00727370913662
0.0488995911061

</f e a t u r e>
. . .

</ f e a t u r e s>
</g l yph>
. . .

</g l y ph s>
</gamera database>

4). The training interface allows the user to create
databases of labeled glyphs, including through the
merging and splitting connected components.

The interface can easily be extended to include
new elements as modules are added to Gamera. The
entire GUI is written in Python, using the wxPython
toolkit [8].

2.3 Implementation details

2.3.1 Image classes

The storage and manipulation of images is one
of the most important aspects of Gamera. Gamera
must provide not only general-purpose image manip-
ulation functions, but also infrastructure to support
the symbol segmentation and analysis. The features
of the Image classes in Gamera include:

Polymorphic image types. Gamera images can
be in stored using a number of different pixel types,
including color (24-bit RGB), greyscale (8- and 16-
bit), floating point (32-bit) and bi-level images,
though new images types can be added as desired.

Consistent programming interface. The inter-
face to all types of images (in both C++ and Python)
is the same. While some methods are not available
for all image types (e.g. thresholding a bi-level image
would not make sense), in many cases image types
are interchangeable, meaning types can be changed
at different points in the development process.

Use of existing code libraries. The image
classes have been designed especially to make trans-
ferring code from other C/C++ image processing li-
braries as easy as possible. For example, many algo-
rithms in the VIGRA library [9] can be used in Gam-
era without modification. Using C libraries, such as
XITE [10], often requires only a few minor modi-
fications of the code. This ability has reduced our
development time considerably.

Portions of images. The image classes allow for
the flexible and efficient representation of portions
of images, including non-rectangular regions, with-
out resorting to memory copying. The bi-level im-
ages actually store 16-bits-per-pixel, so that label-
ing information can be stored to define connected
components. This uses a considerably smaller mem-
ory footprint than using separate data for each con-
nected component.

2.3.2 The plugin system
Writing wrapper code to call C/C++ from Python

is a time-consuming, error-prone and repetitive
task. A number of general-purpose tools ex-
ist to help automate this process, including
SWIG (http://www.swig.org) and Boost Python
(http://www.boost.org). In fact, an earlier version
of Gamera used Boost Python, but the additional
function-call overhead for our highly polymorphic
image types lead to poor performance of that sys-
tem as a whole. We have since developed our own



Figure 2: The Gamera console window.

wrapper-generating mechanism specific to Gamera
and its classes. This allowed us to provide opti-
mizations and conveniences to the programmer that
would not be possible with a more general approach.

To add a plugin function to Gamera, a program-
mer writes metadata about the function (in Python)
and a single function to perform an image-processing
task (in C++). Plugin functions are grouped into
standard Python modules, which are collections of
related classes and functions.

As an example, the metadata for the Morphology
module (morphology.py) is listed below.

c l a s s e r o d e d i l a t e ( P l ug i nFunc t i on ) :
s e l f t y p e = ImageType ( [ONEBIT , GREYSCALE , FLOAT] )
a r g s = Args ( [

I n t ( ’ t imes ’ ,
range = ( 0 , 1 0 ) , d e f a u l t =1),

Cho ice ( ’ d i r e c t i o n ’ ,
[ ’ d i l a t e ’ , ’ e rode ’ ] ) ,

Cho ice ( ’ window shape ’ ,
[ ’ r e c t a n g u l a r ’ , ’ o c t agona l ’ ] )

] )

. . .

c l a s s MorphologyModule ( Plug inModule ) :
c pp heade r s = [ ”morphology . hpp” ]
cpp namespaces = [ ”Gamera” ]
c a t e go r y = ”Morphology ”
f u n c t i o n s = [ e r o d e d i l a t e , e rode , d i l a t e ,

rank , mean ]
autho r = ” Michae l Droettboom and Kar l MacMil lan ”
u r l = ” ht tp : // gamera . dkc . j hu . edu/”

Each plugin function has a class that inherits from
PluginFunction. There are a number of (static)
members of this class that can be used to customize
the function. self type lists the types of images

that the function can be performed on. This infor-
mation is important, since we must map the poly-
morphic method calls made in the Python envi-
ronment to a particular compiled instance of the
function in C++. The args member gives details
about the function’s arguments. This detail goes be-
yond what could be obtained automatically from a
C++ function declaration to include elements such as
ranges and named enumerations. This information
is used both to automatically generate the function
wrapper code and to generate dialog boxes within
the GUI (Figure 5). At the module level, there is
a single class to describe the entire module that in-
herits from PluginModule. This is used to spec-
ify which C++ headers or libraries need to be in-
cluded, authorship information, and other miscel-
laneous hints to the C++ compiler. The plugin func-
tions themselves are just free C++ functions. The
declaration of the function for erode dilate (in
morphology.hpp) is given below. (The details of the
algorithm itself are not important to understanding
the plugin system.)

template<c l a s s T>
vo id e r o d e d i l a t e (T &m, uns igned i n t t imes ,

i n t d i r e c t i o n , i n t window shape ) {

. . .

}

The Gamera build system uses the above meta-
data to generate a wrapper for the function. Since
the function is templatized, a different instance



Figure 3: The Gamera image viewer.

Figure 5: An automatically generated dialog box.

of the function is compiled for each of the im-
age types it supports. The plugin functions are
added to the Gamera Image class at runtime. This
makes it possible to use standard dot syntax to call
these methods. For example, the plugin function
erode dilate could be performed on image img0
with the statement img0.erode dilate(0, 0, 0)
(instead of erode dilate(img0, 0, 0, 0) ).

2.3.3 Workflow

Gamera has a workflow infrastructure that allows
the end user to easily tie tasks together into a com-
plete recognition system. The workflow engine han-
dles the persistence of data at each step, so that if
a particular step fails, it is possible to roll-back and
begin in the middle of a process without repeating
preceding steps. Again, this encourages the test-
and-refine development model. We plan to extend
this workflow concept to include a simple visual pro-
gramming language (signal-flow graph) [11], to make
it easier for non-programmers to customize and build
their own systems.

2.3.4 Unit-testing

Gamera includes a convenient unit-testing frame-
work for testing plugins or other functions. If no unit
tests are written for a given function, stock source
images are used with default arguments, and the
resulting image is compared to one that has been
declared correct. If a step requires more rigorous
testing, a custom unit test can be written. In either
case, Gamera handles all of the details of saving and



Figure 4: The classifier window.

loading images to disk and verification.

3 Recent developments

That completes the overview of the architecture of
Gamera. Some of our recent research includes de-
signed a declarative pattern matching engine, im-
proving the handling of degraded documents, and
using clustering techniques to reduce manual train-
ing times and provide additional verification. These
three subprojects are discussed in detail below.

3.1 Pattern matching engine

A pattern matching engine is included to assist with
basic structural analysis problems. Using a logic
programming language such as Prolog [12], or per-
haps a domain-specific minilanguage, would be suit-
able for this purpose. However, we felt it would de-
crease the usability of the system to add yet another
programming language to the mix. Therefore, the
pattern matching engine is designed so that authors
simply write specialized Python functions that add
some declarative programming to what is still pri-
marily an imperative approach.

An example rule function for finding periods at
the end of sentences is given below.

# Find p e r i o d s at the end o f s e n t e n c e s
# ( a ) f u n c t i o n s i g n a t u r e
def f i n d p e r i o d s ( a=”dot ” , b=” l e t t e r ∗” ) :

# ( b ) e x p r e s s i o n
i f ( Fudge ( a . l r y ) == b . l r y and

a . u l x > b . l r x and
a . u l x − b . l r x < 20) :

# ( c ) o p e r a t i o n
p e r i o d = a . copy ( )
p e r i o d . c l a s s i f y h e u r i s t i c (

’ punc tua t i on . p e r i o d ’ )

# ( d ) added , removed
r e t u r n [ p e r i o d ] , [ ]

The argument signature (a) defines which symbols
will be applied to the function, using regular expres-
sions to match the class name. (Remember, the
symbols have already been classified in the previ-
ous stage.) The regular expression syntax used is
designed to be as convenient and familiar as possi-
ble, and is based on what one might find in a Unix
shell. In the example, the variable a will be unified
with glyphs classified as dot, and b with glyphs of
any class beginning with letter. The body of the



function generally contains an expression (b) and an
operation (c). The expression tests for some cri-
teria, such as the relative position of glyphs. The
operation will then produce data to make note of
the found pattern. Lastly, the function returns two
lists of glyphs (d) that should, respectively, be added
or removed from the global set of glyphs. If the
function causes no direct side-effects (i.e. doesn’t
directly modify data, but instead returns modified
copies), the Gamera GUI is able to provide undo
functionality on top of the pattern matching engine,
which helps to support the test-and-refine develop-
ment model.

The time-complexity of the pattern matching en-
gine is improved by storing all the glyphs in a grid
index. Only groups of glyphs in the same or adjacent
cells are used as candidate groups for arguments to a
pattern matching function. The size of the grid cells
can be adjusted, to change the amount of adjacency
possible within a pattern.

The pattern matching engine has proven to be use-
ful for solving a number of problems, including find-
ing punctuation and grouping parts of cursive words.
We plan to improve it to support global optimiza-
tions and pattern-ordering facilities. There are also
improvements in runtime that could be achieved by
indexing the functions by their expressions. Since
the approach is so straightforward, however, it is
difficult for the pattern matching engine to achieve
optimal runtime efficiency. In any case, it remains a
very useful rapid prototyping tool, again supporting
the test-and-refine model. In addition, the full power
of Python can always be used to perform syntactic or
structural analysis when the pattern matching tools
are too weak or inefficient.

3.2 Character degradation

Most commercial optical character recognition
(OCR) systems are designed for well-formed, mod-
ern business documents. Recognizing older docu-
ments with low-quality or degraded printing is more
challenging, due to the high occurrence of broken
and touching characters. Gamera includes unique
approaches for dealing with both of these problems.
These algorithms have been very successful on a set
of real-world historical documents.

For the purposes of this paper, a connected com-
ponent (CC) is a set of black pixels that are
8-connected. By definition, characters are broken
when they are made up of too many CCs, and they
are touching when they are made up of too few CCs.
Broken characters can not be joined simply by the
distance of the CCs alone, since two intentionally
separate characters can often be closer than the two
parts of an accidentally broken character.

3.2.1 Other approaches

Thresholding converts a color or greyscale image
to a bi-level image, such that black is used to in-
dicate the presence of ink on the page and white is
used to indicate its absence. Improving thresholding
by looking for shades of grey in the areas where CCs
almost touch, using entropy, can reduce the number
of broken characters [13]. However, in many histori-
cal documents, the characters are completely broken
on the page and intelligent thresholding, since it has
no knowledge of the shapes of the target characters,
performs poorly.

Active contour models (ACM), or snakes [14], find
a vector outline for each symbol using certain con-
straints on the elasticity of the outline. Unfortu-
nately, ACMs, which were designed for gross shape
recognition, perform poorly on the fine details that
are required to recognize printed characters.

Post-processing using some kind of language
model, including a dictionary or n-grams of a lan-
guage [15] has also been used to improve the recog-
nition of broken and touching characters. However,
such models are less useful for documents containing
ancient languages, mixed-languages or a high occur-
rence of proper nouns.

Therefore, an ideal solution would include knowl-
edge of the individual symbols without requiring a
language-specific model.

3.2.2 Broken character correction

The goal of the broken character connection
(BCC) algorithm is to find an optimal way to join
CCs on a given page that maximizes the mean con-
fidence of all characters.

The algorithm begins by building an undirected
graph in which each vertex represents a CC in the
image. Two vertices are connected by an edge if the
border of the bounding boxes are within a certain
threshold of distance. Experiments demonstrated
that this threshold is best set to 3/4 of the average
distance between all bounding boxes. (CCs can also
be connected by morphological dilation, though the
bounding box method is much faster and produces
only slightly less accurate results.) This creates a
forest of graphs where each graph is roughly equiv-
alent to a word in the document. Figure 6(b) shows
one such graph. A graph representation, rather than
a string representation, of connectivity is necessary,
since characters can be broken in the x- and/or
y-direction and cycles can occur between CCs.

Next, all of the different ways in which the CCs
can be joined are evaluated. Every possible con-
nected subgraph is enumerated by performing a
depth-first search from each vertex. The subgraphs
created from the word in Figure 6(a) are shown in
Table 1. To avoid enumerating duplicate possibili-



Figure 6: (a) an original image of a word from the
testbed; (b) how the connected components are con-
nected to form a graph; (c) the correct solution.

(a)

(b)

(c)

ties, the vertex v assigned a number Nv, and an edge
is traversed from vertex a to b only if Nb > Na. To
improve runtimes, the depth of the search is limited
to the maximum number of CCs that would typi-
cally make up a single broken character. This con-
stant is adjusted automatically based on the amount
of degradation in the image and is usually between 3
and 5. The “correctness” of each of the images rep-
resented by these subgraphs is evaluated by merging
all of its CCs into a single image and sending it to
the symbol classifier. The symbol classifier returns
a confidence value that indicates how similar the
merged image is to known symbols in the database.

Since we are using the k-nearest neighbor (k-NN)
classifier [4] for symbol classification, it was most
convenient to use a confidence measure based on
distance. More elaborate ways of determining con-
fidence, such as analyzing the clustering of symbols
within the database, have been suggested, but they
do not significantly affect the success of the BCC
algorithm.

Once these subgraphs have been evaluated, an op-
timal combination of them must be found. Each
subgraph is represented by a bit-string, in which a 1
indicates the presence of a vertex. The goal is to find
combinations of subgraphs such that each vertex is
used exactly once. By sorting the list of subgraphs
in lexical order by their bitstrings, we can use the
following criteria to do this efficiently:

Given subgraphs P and Q, Q can be added
to P if it (a) does not have any vertices
in common with P and (b) contains the
lowest-numbered vertex that P is missing.

More formally,

Criterion A:

let V be the set of all vertices in the entire
graph, and P ⊆ V, Q ⊆ V ;
(a) ∀v ∈ Q, v /∈ P ;
(b) ∀v ∈ V, Nv < min(∀w ∈ Q, Nw) ⇒
v ∈ P .

The importance of sorting the list of subgraphs is
that Q will always be after P in the list, thereby
reducing the arity of the search tree. The algorithm
starts by setting P to the empty set. All subgraphs
Q that meet Criterion A are combined with P .
The union of P and Q is then used as P recursively,
until P = V . The mean confidence of all the Q’s
used in each path of recursion is used to evaluate
the combination. The combination with the highest
mean confidence is chosen as the correct combina-
tion.

The runtime of the combination-finding can be im-
proved by exploiting the fact that each subgraph P
has a fixed set of subgraphs Q′ that are contiguous
in the sorted subgraph list and that meet Criterion
A(b). These sets can be found ahead of time in lin-
ear times relative to the number of vertices (O(|V |)).
Once this is done, we’ve reduced the search space
from each P considerably. For example, Table 1
shows the beginning and ending (non-inclusive) in-
dices of Q′ for each subgraph in the from and to
columns. In this example, the mean size of Q′ is 4.7,
which corresponds the mean arity of the search tree.
Without this optimization, the mean arity would be
|V |
2 = 37. As an additional optimization, “memo-

ization”, borrowed from dynamic programming, is
used to store the best result of all subtrees of the
search so that identical subtrees do not need to be
traversed multiple times.

While a full runtime complexity analysis of the
entire BCC algorithm is beyond the scope of this pa-
per, the asymptotic upper bound is O(n lnn), where
n is the number of vertices in the graph. However,
when there are no cycles, the runtime is reduced to
roughly O(kn), where k is the maximum size of the
subgraphs (usually 3 ≤ k ≤ 5).

3.2.3 Touching character correction

To deal with touching characters, we have an en-
tirely different approach that was first used for op-
tical music recognition [16]. The symbol classifier is
trained with examples of touching characters, which
are given a class name beginning with the special
token split. When the classifier later matches
an unknown to an example starting with split, it
will perform a splitting operation on the connected
component, and then recursively classify the results.
The splitting operation can be any function that
examines a connected component and splits it into
multiple connected components through some kind
of heuristic process.

For example, we have implemented primitive
splitx function that splits a connected component
by finding a minimum projection on the x-axis near
the center of the connected component. If we let px

be the size of the projection (number of black pixels)



Table 1: The bitfields and jumps created from the
graph in Figure 6(b). The bits have been reversed to
match the way the characters are read (left-to-right).

#
Nv 0 1 2 3 4 5 6 7 8 9 10 11 12 13 from to

0 • 7 18
1 • • 18 28
2 • • • 28 34
3 • • • • 34 41
4 • • • • 28 34
5 • • • 18 28
6 • • • • 18 28
7 • 18 28
8 • • 28 34
9 • • • 34 41

10 • • • • 41 45
11 • • • 28 34
12 • • • • 28 34
13 • • • • 28 34
14 • • 18 28
15 • • • 18 28
16 • • • • 18 28
17 • • • • 18 28
18 • 28 34
19 • • 34 41
20 • • • 41 45
21 • • • • 45 49
22 • • • • 41 45
23 • • 28 34
24 • • • 28 34
25 • • • • 28 34
26 • • • 28 34
27 • • • • 28 34
28 • 34 41
29 • • 41 45
30 • • • 45 49
31 • • • • 49 54
32 • • • 41 45
33 • • • • 41 45
34 • 41 45
35 • • 45 49
36 • • • 49 54
37 • • • • 54 60
38 • • 41 45
39 • • • 41 45
40 • • • • 41 45
41 • 45 49
42 • • 49 54
43 • • • 54 60
44 • • • • 60 66
45 • 49 54
46 • • 54 60
47 • • • 60 66
48 • • • • 66 67
49 • 54 60
50 • • 60 66
51 • • • 66 67
52 • • • • 67 71
53 • • • • 66 67
54 • 60 66
55 • • 66 67
56 • • • 67 71
57 • • • 66 67
58 • • • • 66 67
59 • • • • 66 67

#
Nv 0 1 2 3 4 5 6 7 8 9 10 11 12 13 from to

60 • 66 67
61 • • 67 71
62 • • 66 67
63 • • • • • • • • • • • • 66 67
64 • • • • 66 67
65 • • • 66 67
66 • 67 71
67 • 71 73
68 • • 73 74
69 • • • 74 74
70 • • 71 73
71 • 73 74
72 • • 74 74
73 • 74 74

Figure 7: Example of touching characters being split
using a projections-based split algorithm.

in column x, and dx be the distance from the center
along the x-axis (|w2 −x|), the score for each column
is determined with the Euclidean distance equation:

s =
√

px
2 + dx

2 (1)

The column with the minimum score is selected
as the split point. Figure 7 shows an example
of splitting a connected component, classified as
split.splitx, using this method. Of course, more

sophisticated ways of splitting are possible. For ex-
ample, we have also implemented an algorithm that
removes vertical lines from compound musical struc-
tures in order to separate their components.

The runtime complexity of this approach is de-
pendent on the underlying symbol classifier and the
splitting operation. The splitting operation defined
above runs in linear time.

3.2.4 Results

To evaluate the BCC algorithm, we used the Sta-
tistical Accounts of Scotland [17]. This collection
of census-like data was printed in 1799, with reused
metal type on wooden blocks. The age of the paper,
combined with the low-quality type and press-work,
presents challenges for OCR. The typeface is charac-
terized from modern business documents by the use
of the “long s” (

∫
) and a high occurence of ligatures

ff, ffi, ffl, etc.) Table 2 shows the distribution of the
types of characters in the collection. The manually-
generated groundtruth data also makes this collec-
tion valuable for research.



Table 2: Distribution of character types in the sam-
ple data. Note that failure to deal with broken and
touching characters gives a maximum possible accu-
racy of 81.3%.

complete characters 81.3%
broken characters 10.7%
legit. broken characters (i, j, ;, : etc.) 6.2%
touching characters 1.8%

The results below were obtained by training the
classifier using five pages, and then testing the algo-
rithm on five additional unseen pages with similar
typeface.

If the symbol classifier only has knowledge of
the complete characters in the image, BCC cor-
rectly finds 71% of the broken characters in our test
data. By training the symbol classifier with exam-
ples of broken characters that were manually identi-
fied, BCC correctly finds 91% of the broken charac-
ters.

BCC also performs well with legitimately broken
characters, such as i, j, ; and :. By training the sym-
bol classifier with examples of each of these charac-
ters, BCC was able to find and join 93% of the le-
gitimately broken characters. This renders further
procedural programming of heuristic rules (such as
to attach ı’s to dots) unnecessary. Therefore, it easy
to support new character sets that have other legiti-
mately broken characters, such as the Greek majus-
cule xi (Ξ).

As for touching characters, our approach catches
and correctly splits 93% of the touching characters in
the dataset. Note, however, that touching characters
had a much lower occurrence than broken characters.

3.3 Improving learning classifiers
with clustering

Learning classifiers provide a flexible basis for the
creation of document recognition tools that adapt
to the specific set of characters of symbols present
in a document [18]. Unfortunately, the manual la-
beling of thousands of examples that is required
to train a learning classifier is time-consuming and
error-prone. In the case of cultural heritage materi-
als, which may be degraded or in obscure languages,
training may require specialized knowledge, making
it more difficult to find users capable of training a
system [1]. Additionally, verifying the training data
after labeling is important to ensure the accurate
performance of the classifier. Finally, the automatic
evaluation of the performance of a learning classi-
fier is required for large digitization projects. This
section presents the use of clustering for the pre-
labeling of symbols to shorten training time and for

the verification of the data after training.

3.3.1 Clustering Overview

Clustering is the organization of a collection of in-
put patterns into clusters based on similarity. In the
context of document recognition, a clustering algo-
rithm would be presented with the symbols from a
document and would, ideally, group all of the same
symbols together. Clustering is a large field with
many different goals and techniques (see [19] for a
review of clustering techniques and applications). In
this application of clustering to multi-lingual doc-
ument recognition, graph-theoretic clustering was
chosen because it does not require the target num-
ber of clusters to be known, is deterministic, and has
reasonable algorithmic complexity for the size data
considered [20, 19].

3.3.2 Graph-Theoretic Clustering

Graph-theoretic clustering operates by creating a
minimum spanning tree (MST) of a set of points
and deleting edges in the graph based on some crite-
rion [20]. The sub-graphs created by the deletion of
the edges represent the clusters. In this application,
the point set is created by segmenting an image into
symbols and measuring the distance between all of
the unique pairs of symbols. The distance measure-
ment, which operates on a set of features represent-
ing the symbol, used in these experiments is either
simple Euclidean or Manhattan. The criterion used
for the deletion of edges is the standard deviation
of the current edge weight to the mean of the edge
weights of the edges within a local window. Exper-
imentation reveals that using a standard deviation
of above 1.5 and window size of 2 to 4 nodes from
the current edge yields good results on a variety of
documents.

3.3.3 Pre-classification clustering

Instance-based learning classifiers, like the
nearest-neighbor classifier, leverage the knowledge of
domain-experts by allowing them to train the clas-
sifier by identifying (labeling), a set of symbols that
the classifier uses to identify subsequent symbols.
This allows the classifier to be used to identify al-
most any symbols without additional software devel-
opment. Unfortunately, the time required to train
learning classifiers can be a major drawback.

At the beginning of the training process the sys-
tem, by definition, has no knowledge of the symbols
that are about to be labeled. It is not possible, there-
fore, to present the symbols in a way that makes
their relationships apparent to the user, making the
task of training take significantly longer than if the
symbols were already grouped. Figure 8 shows the
initial state of the Gamera training tool.



Figure 8: The beginning of a training session without clustering.

Using clustering to group the symbols together
before presenting them to the user can reduce the
training time, however. This reduces the problem
of training to labeling groups of symbols and has
the potential to reducing training mistakes. Figure
9 shows the initial state of the Gamera training tool
when pre-labeling clustering is used.

3.3.4 Post-Training Verification
The effectiveness of a learning classifier is depen-

dent on the quality of the training set. Clustering
can be used to help a user verify the manual la-
beling of symbols. Each group of manually trained
symbols can be clustered and the results presented
to the user. Because any incorrectly labeled symbols
will appear as a separate cluster in the results it is
much easier for the user to identify mistakes than
if presented with all of the symbols from a group
without clustering. It is important to note that this
verification process cannot be fully automatic, even
if the clustering algorithm performed without errors,
because a user may choose to label visually dissim-
ilar glyphs as the same symbol. For example, the
same letter in multiple typefaces might be labeled
as one symbol. This flexibility in the training is an
important aspect of many learning algorithms and
should be preserved.

4 Conclusion

The Gamera system is well on its way to being a
complete framework for the development of recogniz-
ers for a broad range of historical documents. Our
own use of the system has helped us find weaknesses

in the framework that we’ve subsequently improved.
We are also pleased by how much more efficient and
less frustrating programming in the Gamera frame-
work is relative to building standalone applications
from scratch. Our success in recent applications
with real-world data is a testament to the utility
of our approach.
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